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INTRODUCTION

In studies of polymer failure under stress, a knowledge of
the mechanical properties of the material becomes a necessary
pre-requisite to the understanding of the mechanics of failure.

This requirement is appreciated when one realizes that the occur-
rence of failure is related closely to the loading history, and there-
fore the mechanical behavior of the material. The more detailed
aspects of the study involve the comparisons of behavior under
various monotonic and sinusoidal cycling histories. It often assists
in these studies to look at the ability of a viscoelastic material to
convert the boundary forces into elastically stored or dissipated
energies. The heat build in a specimen is synonomous with diss:i-
pation and could have significant thermal effects on the miaterials?
fajlure. If these effects cannot be caiculated one can investigate
failure isothermally, using appropriate geometry and test conditions.
The other extreme temperature condition worthy of consideration in
testing is to produce a test environment in order that the temperature
in the material increases adiabatically. This kind of information
would also be useful when the dissipation is iarge and failure ovccurs
over short intervals of time.

This paper is concerned with the mechanical propertics of a
test material known as Solithane 113 which is being used for studies in
failure. Some physical properties have been calculated from linecar
viscoelastic theory using spring and dashpot model representations.
The elements of the model are determined from the relaxation modulus

for the material obtain in tests at small strains in tension. The energy



responses of the material to a wide spectrum of load inputs are
prescnted in a set of graphs. Other details include the complex
modulus and complex compliance behavior in which their compo-
nents have been plotted as functions of the input frequency. Various
strain rate histories and their combinations have also been investi-
gated and a special case is treated where two strain rates are com-
bined at various ratios and the results are plotted for soliithane
material.

The next portion of the paper deals with estimating the
specimen geometry which will enable isothermal tests to be carried
out under sinusoidal strain inputs. Also the adiabatic rise of tem-
perature in a specimen is considered for sinusoidal inputs using an

incremental method of approximating the temperature increases.



SECTION 1. MECHANICAL PROPERTIES

The complex modulus and energy equations have been derived from
one dimensional linear viscoelastic theory using a Wiechert model repre-

sentation (Figure 1) for prescribed strain inputs and a Kelvin model repre-

1,8

sentation (Figure 2) for prescribed stress inputs. The relaxation

modulus curve for the material is approximated by a Prony Series repre-

sentation given in the following equation
#7 .
7‘.
E. ) = me + 2 1y e % (1)
rel/ <7 %

which is shown plotted with the actual relaxation curvein Figure 3.

The stress response to unit step strain is then given by the equation

# -z
() = (me+ 5 ome T ) He

‘{

S
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W
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With this equation the general equation for stress response to a strain
: L . 4 :
input can now be generated in the Duhamel superposition integral and is

given by the equation

. e
o (t) fé(t)me+2;/nfi/e “lel) dT (3)

o

From these equations the complex modulus can be determined if we let the

input € (t) = Goeim (4)

Then for long times
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ot = L) = £ + < E (5)

where E*(w) is the complex or dynamic modulus which can be represented

explicitly by the following set of equations

My

*
f(w) = p1,

N

/) + A COT,

/ r?
£ = 3 o (0L z)” (™
< Rt eoT )2

V4 ( ’T
£ = 2. . Y~ (8)

/(_:/ A /./-([07;)2

Equations 7 and 8 were caiculated for Solithane 113 and the results are
shown plotted as a function of frequency in Figure 4.

The dynamic compliance can be expressed by the following equation

Z)»L(éo) D - «p” (9)

it

and is defined as the inverse of the dynamic modulus. It is shown plotted
in a similar manner for D' and D" in Figure 5. The following energy

, 3
responae equations for strain inputs were calculated for the model” in

Figure 1.

-4.
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The elastic energy for the ith Maxwell element is given by

(10)

™
s
Q

~93

2 /"7/("
Substituting Equation 3 with kquation 10 results in an energy equation for

the Wiechert model representation and is given by

2t

7 s
Mé(t)+lzme ‘//eie((/a’T) (11)
A= (o)

Similarly, the energy dissipation rate for the i

by

We/ =

Maxwell element is given

({ o(// ‘.?
W, = v € - Y (1)
v A 3 77,
A

now since T the relaxation time=

y then Equations 12 and 3 will
combine to give the following equation for dissipation rate

W, 4{‘? :Aef// é(ch’/T



from which the dissipation can be obtained by the equation

. #1 ¢ =2C
WV = /thV At __‘Z/“ 7:—7& e & szzf (14)
[} A= A, ]

where I in Equation 14 is given by
L A
[ = / e el7)dT

Similar equations for prescribed stresses can be established by
referring to the Kelvin model representation shown in Figure 2. The strain

response (or creep behavior) to input stresses 1s given by the equation

et) - [ D, (t-7)56) AT s

where D rp(t) in the above expression 13 defined as the creep compliance
c

and can be {itted by a Prony series equation of the 1orm:

_r
Z PR 2 |
D, - +£j/ D (- ™) (16)

The conversion of complex modulus data to creep compliance has been

, 10 , . . . )
9,1 and is not therefore included in this discussion.

treated in other papers
The above sets of equations have been used to determine the energy
and stress responses for the following inputs:
i. € - € Ht)
o}
ii. € = Rt (17)

ifi. €

€ sinwt
e}



iv. o = 0 H{(t)
v. g = Pt (17 contd.)
vi. g = 0 8in wt

&)

for t> 0.

Details of these equations for stress, strain, and energy responses
are given in Appendix 1. These equations have been used to compute the
properties of Solithane 113 (on an IBM 7090/7094 digital computer) and the

results are shown plotted in Figures 6-11.

MULTI-STRAIN HISTORIES

In this example of multi-strain histories the behaviors of a material
could be particularly useful when investigating various paths of strain
history to failure.

In order to investigate these histories, a generalized input function
is used which comprised a ramp strain, followed by a ramp superimposed

with a sinusoidal strain, and can be represented by the following expression,

ER) = Rt Hit-t) +(R 15 + R, (+. 1) # €, Sin co(¢-2,)) Y (t-t.)

for t> 0. (18)

The stress and energy results for the above inpuat are given in
Appendix 2. Various combinations c¢an be obtained from kquation 18 and
their portions of the solution given in Appendix & are easily distinguishable.

In studies of various strain histories to failure it is often desirable
to obtain the unique values of a given type of strain history for a prescribed
point in o - € space. An example is now given of determining two constant

-7-
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strain rates Rl and RZ in which a ratio Rl/RZ is prescribed, the position
of change known between Rl and RZ as a strain and the final pouint in stress-~
strain space known.

The solution for Rl (or RZ) can be obtaincd by an iterative pro-
cedure uscd with the aid of a high speed computer. Dectails of this iterative
method are outlined in Appendix 3. In Figure 12 the stress-strain curve

for three ratios of R 'R& are shown for a4 givenpoint in o - € space using

1/
Solithane 113. The energies invulved in reaching this stress-strain level
by the three paths are shown in Figure 13, These results should be treated
cautiously because considerable deviations could occur between these
curves and experimental results due to the non-linearity of the material

at finite strains. 1 The interpretation of these results (Figures 12 and 13)

in relation to failure is discussed in another paper.’
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SECTION 2., TEMPERATUKI, CONDITIONS

When dissipation is significant it becomes mandatory to calculate
the thermal behavior of the material and details of this type of calculation
are given in another paper, 8 indicating that the presence of sizeable
temperature effects could cause much difficulty in failure studies. Con-
siderable simplification might be achieved 1t 4 uniform and constant tem-
perature state can be realized intesting for sinusoidal inputs. An
approximate set of calculations have been made to estimate the upper
limit of the input frequency which will give near uniform temperature
distribution across the thickness of the specimnen,

The other case considered 1s adiabatic increase in the temperature
of a specimen for sinusoidal input.  These calcilations or temperature
increasc are based on the effect of an inoremental teiperature chanpe on
the properties of the material. Details of these cases of 1sothermar and
adiabatic temperature conditions for sinusoidal inputs are giver in the
following

(a) Isothermal tests

If the test specimen is considered, for simplicity, to be anintinite
sheet of uniform thickness with tlat surfaces and that both surface ten-
peratures of the specimen are taken to Do constant at veve, then the heat

flow could be assumed as one dimensional arc expressed by the equation’

/
27 L oaT W o)
> X K >t y% /



where T temperature

t = time
K1 = thermal diffusivity
K = thermal conductivity
and WV' = dissipation rate.
Assume that W.,' is constant with respect to time and distance x, thatis

v

then, for a thickness - {< X ({, the steady state solution for temperature
distribution across the specimen satisfying these conditions can be expressed

by the equation

T = %//(’{—XV/ZK (20)

?
when x = 0, an equation for half thickness i given by

- /27K (21)

Wy

The dissipation rate WV’ can be obtained from the following equation

WV per cycle . )
W' o= = an average dissipation rate (22)
time of one cycle

The ratios of thickness and T(x= 0) versus w_ have been computed from
T
tke normalized expression

-10-
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and plotted out as

log go f versus loo ()
— .
JAKT /
for Solithane 113 in Figure 14. The frequency 88 can be determined as
an upper limit when a thickness and temperature 1T ot x = 0 are pre-
scribed. It should be observed in applying Figure 1[4 that for prescribing
T at x = 0 the variation in dissipaiion avross the specimen must be suf-
fictently small that it can be considered uniform.

(b} Adiabatic temperature increases tor sinusoidal strain input.

Let W, be defined as the dissipation per cycle at temiperature
1
T = Tl (see Appendix 1), then WV is the dissipation per cycle at tem-
n
perature T = 'l'n

7. = W, = .

where ar is the temperature-frequency shift factor given by the WLF
n

equation. 7

Let N = number of cycles at WV dissipation necessary to cause
n
a temperature change at ATrHl given by the equation

AT - T —_— /,7 = A7 (constant)

A4/ F14-/

~11-
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»

Let C be the heat capacity per unit volume,

then N oW Z 47 LN W
'

Ny F1#1 Yer

It was found that either side of the equality gave comparable results
provided AT was made small.

Therefore in general

A7 . C
K w, Lo, a. /7 +(x-1)47.)

He

with the additional simultancous relations

pooL 2T
#o o f, TR

Ly &)= To 1 75

Example of these calculations are given for Solithane 113 in Fioure 15,
the initial temperature 1‘0 = -20"C and a trequency of ore radian per
second.

Note that due to the strung imtial dissipation the temperature rises
first rapidly and then, as the material heats up and dissipation increases,

the rate of temperature decreases also.

-12-
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SUMMARY

A set of equations have been derived for stress, stramn, and energy
responses of linear viscocelastic systems for a wide range ot inputs, these
equations were then employed to compute the mechanical properties of the
material Solithane 113. The temperature conditions for 1sothermal and
adiabatic testing of the material were then calculated for sinusoidal strain
inputs and graphs presented for measuring a specimen thickness or an

adiabatic temperature increase.
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APPENDIX |

VISCOELASTIC BEHAVIOR OF SOLITHANE 113

From experimental relaxation data for Solithane 113, a Prony
series was fitted to the relaxation modulus curve, using 42 decades of
time to collocate to points which will span the transition region from
asymptotics I glassy to E rubbery shown in Figure 3. The following
list of equation , expanded from Equations 3, 11, and 14, are used to
compute the stress-strains, and the energy ratios in time.

(i) Step Strain Input

€ =€, Ht)

(a) Stress Response

T(t)- E,m, + 2 €,
ey
(b) Total Elastic Energy
/ 2 , r7 2 ’:f'.{
We/ =5 m, € /—2—(_2/‘ r. € €

(c) Viscous Damping

= L h7 . & — <
WV 2’1[; 1.¢ [/-€ )

-15-



(ii) Constant Strain Rate

(a) Stress Response

P
~#)  Rim, ¢ 5 e RT 1 ")

(b) Total Elastic knergy

~

Vi
- 4 2,72 Y .22 )‘;{: 2
Wy =3 meRE+ 45 m K1 e7)

(c) Viscous Dissipation

Wy = 2w, R o fre ) f e //

(iii) Sinusoidal Strain Rate for Steady State Stress

€ = €, Sin wt A > o
(a) Stress Response
" py e o T ¢
U(t) = 7€ Sinwt + Z T o_,___ Shr wit - /(,.;wg)
A = w (uf

(b) Total Elastic knergy

-16-



(c) Viscous Dissipation

W, = J/XZ:? ", w § 601//#1025 7)72@2‘- s117 Z/Wf*%c) s SMZ/ZQ

Son 24, - 2LL
(11 ch 5 o7 2

EQUATIONS FOR THE STRESS INPUTS PRESCRIBLED

(i) Step Stress Input

U= U H{E
(a) Strain Respons:
z
l4) f_‘
- v S A
St) - %Dp, + L wn i-e )
(b) Total Elastic Energy ~
'wel (for ith element = é v 2]) R v (v/(._, >
({- 9/055)/ 7 5 o 9 o o
/ Z ¢ -
= Iy +/_§_é A€,
° Dy
therefore Wel (for Kelvin Model)
77 ‘*ré 2
<z 'Z — z , 7.
We/—chﬁ7 /"2/(.%%“@;/_@
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(c) Viscous Dissipation ¢

A 4
WV (for ith element) = / v (/5

o A A
t/T. ({C: 2
= / ,ff __A) At
° < Vd ¢
hence WV (for Kelvin model)
# 2L
A Z
%@ e ;63 2o (7-C? “
(ii) Constant Stress Rate
o= Pt £ >0
and . _Z:'
3 7-
Dep (t) = Dy # 2 D1 )

(a) Strain Responsc

£
€ [—0/f~72)a‘$ (T) AT

= /0/% Z/ /z‘ 7// € /))

(b) Total Elastic Enecrgy

2 o :
W= 2 (P25 + [ e A4

-18-



Hence We] (for lhelvin model)

-z

_ 4 2 [ Y pirip S g 7
Wey = 3(P8)" Dy # 42 P72 (=2 1<

_t 28

(c) Viscous Dissipation £ . 2
th - L e b
(for i element) WV - E o
Hence WV {(for Kelvin model)

W, Z P7.)°D, -ﬂ——Z// e 5) #1/~ Z;/

(iii) sSinuscvidal Stress Input

g = Vg Sty Ot ZL)(n

(a) Strain Response

¢ 4 /z; 7
€t = @//D? +2 Dfr-e /(d(05w7 AT
o AT

y .
= Do 07 Yincot +Z/2 Vo 201 &=L DT, 05 it +al Sem bot €
< ———t <€

24 2
/4O (%

-19-
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(b) Total Elastic knergy
t

1 2
Wy = L o (4)Dy + / €, “/%
] 2‘2

Hence wel (for Kelvin Model)

: A
= 4 ¢ Y . A
M/e/ 209 TQSinzwf #2/(:2/ :2 5; /5/;7 wl "/;(7“7 ((;‘s wl

£
7‘—((721 ’D«th wt - € ,Z“:))
(¢) Viscous Dissipation

WV (for ith clement) / /7;, / )
U

Hence WV (for Kglvin niodel) e , -
2 2 =S J
WV - Z: (UQ/Z- € (A /{73 wl — / -~2~/052<'0.Z(
,,( s SN
A £ o7 2)?
(/ pa ’zf
/ 7

-20-




APPENDIX 2

DUAL STRAIN HISTORIES WITH TRANSIENT SOLUTION GIVEN FOR
STRESS RESPONSE, LTC.

EH) =K EHE L)+ (kL 1R, (t-1.) 1 ESmait ))//ﬂ-@

(a) Stress Response

L

s -~
v@) = me €l) # 5 moe < (I + 7, # 1,
A/

where
lo
L - R /e 1)
[2 - ,Q?*(A,k/e&*@ (A')
and

te
Eo to X 7,
,.7; = /-/‘CUQT ( /('05 (L)/—{ 4 ) A Lo /'7(,0/f f)_. o /

(b) Total klastic Energy

P .
! 2 /s A
Wey = 2 m, €08 *zﬁ/ ", € /f “ 1, "ZJ)
{(c) Viscous Dissipation
S
0
? -2t

z
]dz‘#

st

7/[/4‘)74] /—]/ AL

_2]..



Expanding and simplifying

4 ¢ 2/¢ ¢)
2 7 N At =
W Z /’V/ (/7,: /,7{;( /) 4+ E 7; .‘7{ € e £o€
/{ y (¢ Pt
- {-f., -2/¢-1)
*,{) /f e L pe e w o
>

t/ €O, /7@'7( (ma/#l);[

!+ cu’
# Sun 200 (-4, )/—/Sf;});l/

e Td

U .
%A’,A’Y’f/pc Kre Hyyoze

: /f(uzz" 2/

4, =2/tL)
+R T fewr //~C’,Z‘72/6 % )
[ #-eo?7 2

-22-
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APPENDIX 3

As explained in the test it is sometimes usetul to find a strain
history that will reach a given point in@,0¢ space. Outlined below is a
method for finding the related dual strains that will reach a given Gb, Ty

point. In order to reach a unique solution we will take

RI/IRZ = constant = K and RITI = éh/c {c = constant)
Thus: - -
S /*z’f,)
C.
= ff’ #= ZL jé_j’ - ’(3 r//
< < £
= 4 — ‘ééd A LK
< < K K
Thus

Gt (1 ek L) K

The problem is thercefore reduced to finding the RJ thuat will

produce Ty Because of the clastic limit not all éb’ b points can be

reached. In order for a solution to exist o, ;€ > L, .
b’ "b ¥ “rubbery

Computing: to isolate R, to within one decade, run through R
i

. -8,
values starting at R1 very small (say 10 7} and go to R, very large

1
0

(say 10" 7). Run through these R1 values by powers of 10 calenlating

g(R 1) each time and comparing it with 0y Now ¢ 1s monotonically

increasing in Rl S0 iféb, oy is a good puint there will be a decade for

R1 betwecen 10-4 and 1010 for which ¢ will be less than oy to the left and

-23-




greater than 7, to the right. Once this decade is found,cut it in halt and
sce if the o for thisg R1 is less than oy If so, R, lHes in the upper half.
This is repeated until Rl is satisfactorily resolved. It takes on the
average 100 iterations to find an Rl which yields a ¢ within 0. ()lo/o of Uy
The Gb level is automatically reached and once Rl is found, R&tl and ta

are also defined.
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INTRODUCTION

In studies of polymer failure under stress, a knowledge of
the mechanical properties of the material becomes a necessary
pre-requisite to the understanding of the mechanics of failure.

This requirement is appreciated when one realizes that the occur-
rence of failure is related closely to the loading history, and there-
fore the mechanical behavior of the material. The more detailed
aspects of the study involve the comparisons of behavior under
various monotonic and sinusoidal cycling histories. It often assists
in thege studics to look at the ability of & viscoelastic material to
convert the boundary forces into elastically stored or dissipated
energies, The heat build in & specimen 1§ synonomous with dissi-
pation and could have significant thermal offects on the materials’
failure. If these effects cannot be calcuiated one can investigate
failure isothermally, using appropriate geometry and test conditions.
The other extrenie temperature condition worthy of consideration in
testing is to produce a test environment in order that the temperature
in the material increases adiabatically. 7This kind of tnformation
would also be uscful when the digsipation is large and failure occurs
over short intervals of time.

This paper is concerned with the mechanical properties of a
test material known as Solithane 113 which is being used for studies in
failure. Some physical properties have been calculated from lincar
viscoelastic theory using spring and dashpot model representations.
The elements of the model are determined from the relaxation modulus

for the material obtain in tests at small strains in tension. The encrgy



responses of the material to a wide spectrum of load inputs are
presented in a set of graphs. Other details include the complex
modulus and complex compliance behavior in which their compo-
nents have been plotted as functions of the input frequency. Various
strain rate histories and their combinations have also been investi-
gated and a special case is treated where two strain rates are com-
bined at various ratios and the results are plotted for solithane
material.

The next portion of the paper deals with estimating the
specimen geometry which will enable isothermal tests to be carried
out under sinusoidal strain inputs. Also the adiabatic rise of teni-
perature in a specimen is considered for sinusoidal inputs using an

incremental method of approximating the temperature increases.



SECTION 1. MECHANICAL PROPERTIES

The complex modulus and energy equations have been derived from
one dimensional linear viscoelastic theory using a Wiechert model repre-

sentation (Figure 1) for prescribed strain inputs and a Kelvin miodel repre-

sentation (Figure 2) for prescribed stress inputs. The relaxation

modulus curve for the material is approximated by a Prony Series repre-

’

sentation given in the following equation

# -t
- (5
Ere/ [f) = e +/(.§ 177, € (1)

which is shown plotted with the actual relaxation curvein Figure 3.

The stress response to unit step strain is then given by the equation

¢ -z
o () :(””e*,z—z”i@n)//ﬁ) (2)
A=/

With this equation the general equation for stress response to a strain
input can now be generated in the Duhamel superposition integral and is

given by the equation

. t _/ér;f .
alt) =€) m, +§/¢1/e el dT (3)

(o)

From these equations the complex modulus can be determined if we let the
input € (t) = eoelwt (4)

Then for long times
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L cwt = f(w) - £y < E" (5)

where E*(w) is the complex or dynamic modulus which can be represented

explicitly by the following set of equations

* n
E(w) = M, +/£2; m. Lt 7 (6)
/+ A cOT
/ r7 T 2
£ = o+ 5 om (L) (7)
<t A T )R
/)
V<4 .
£ - 2 m, e (8)
Py, /—/—((*)7:(‘)2

Equations 7 and 8 were caiculated for Solithane 13 and the resuits are
shown plotted as a function of frequency in Figure 4.

The dynamic compliance can be expressed by the following equation

"

Dﬂ%@") D' - D" (9)

and is defined as the inverse of the dynamic modulus. it is shown plotted
in a similar manner for D' and D" in Figure 5. The following energy

. C . o3
response equations for strain inputs were calculated for the model” in

Figure 1.



LOG E,,, (1bs/in?)

-10

’//—ACTUAL

N REF TEMP=20°C

B PRONY CURVE
] 1 1 | i | 1 1 { 1
-2 -1t -10 -9 -8 -7 -6 -5 <4 -3
LOG T (min.)
FIG.3 RELAXATION MODULUS FOR SOLITHANE 113
- I d
E
- REF.TEMP = 20 °C
|
i { i 1 i 1 1 i i

| L
-l0-8 -6 -4 -2 0 2 4 6 8 I0 12 14 16

LOG w

By

FIG.4 COMPONENTS OF COMPLEX MODULUS; E=E'+iE"; tan ¢=€/E

)

U]
]

D

4
?

LOG (D

2

REF. TEMP=20°C

| | 1 |

|
8 1012 14 16 18 20
LOG w

DI+

Lt Z . 1 1/ 1
-6 -4 -2 -0 2 4

F16.5 COMPLEX COMPLIANCE; D*(w)= D'~iD" tan ¢ = D"/ 0’

IR



The elastic energy for the ith Maxwell element is given by

t
S
W - / v de’
el A 9 ~
- /t._v_::. a/(T (Lo
o "7
z
-
= _*
2”7/(“

Substituting Equation 3 with kquation 10 results in an energy equation for

the Wiechert model representation and is given by

~ 27

a‘//é

o

I

Ewr) o

2 /7
Wey = Z2my€t)+4 2 m e
A=/

L o . . .th . .
Similarly, the energy dissipation rate for the i~ Maxwell element is given

by
. d «d =2
W = v ¢, = Y (12)
14 yi L 7/
P
N

now since T the relaxation time=

; then Equations 12 and 3 will
i
combine to give the following equation for dissipation rate

. ”'2"2"

V7 p = T ;Q R 2
vaz .,/,‘e"// e = é(T/(‘{/T (13)
o

A=/ T,




from which the dissipation can be obtained by the equation

2t
€ ° = 2
/Vl{,dz‘ Zm‘/e'a[c{z‘ (14)
where I in Equation 14 is given by
LI S
/e Et)etr

Similar equations for prescribed stresses can be established by
referring to the Kelvin model representation shown in Figure 2 The strdi/

response (or creep behavior) to input stresses is given by the equation

/ crp (5“7) V“ﬁj T (15)

where D - {t) in the above expression is defined as the creep compliance
crp

and can be fitted by a Prony scries cquation of the form /
" .
J - 7
= : /- & 16]
o) = B+ 2 D ) (16)

The conversion of compiex modulus data to creep compliance has been

’

treated in other papers and is not therefore included in this discussion.
The above scts of equations have been used to determine the eneryy
and stress responses for the following inputs:
i. € = € H()
o}
ii. €

ii. €

Rt (17)

1

€ sinewt
(0]



iv, o = o H(t)
v. c = Pt (17 contd.)
vi. o = ¢ s¢in wt

o

for t> 0.

Details of these equations for gtress, strain, and enerygy responses
are given in Appendix 1. These equations have been used to compute the
properties of Solithane 113 (on an IBM 7090/7094 digital computer) and the

results are shown plotted in Figures 6-11.

MULTI-STRAIN HISTORIES

In this example of multi-strain histories the behaviors of a material
could be particularly useful when investigating various paths of strain
history to failure.

In order to investigate these histories, a generalized input function
is used which comprised a ramp strain, followed by a ramp superimposed

with a sinusoidal strain, and can be represented by the followinus expression,

é/t/ =Rt ///fo—f;) +(R, 15 + K, (#- 7‘0) + €, S &)(ZL~[0)) ,L//f_fo)

for t> 0. (18)

The stress and energy results for the above input are given in
Appendix 2. Various combinations can be obtained from Iiquation 18 and
their portions of the solution given in Appendix ¢ are easily distinguishable.

In studies of various strain histories to failure it is often desirable
to obtain the unique values of a given type of strain history for a prescribed
point in o - € space. An example is now given of determining two constant

-7
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strain rates R1 and RZ in which a ratio RI/RZ is prescribed, the position

of change known between R1 and RZ as a strain and the final point in stress- }
|

strain space known.

The solution for R, (or R

1 can be obtaincd by an iterative pro-

2)
cedure used with the aid of a high speed computer. Details of this iterative
method are outlined in Appendix 3. In Figure 12 the stress-strain curve
for three ratios of RI/R& are shown for « givenpoint in ¢ - € space using
Solithane 113. The ¢nergies involved in reaching this stress-strain level
by the three paths are shown in Figure 13, These results should be treated
cautiously because considerable deviations could occur between these
curves and experimental results due to the non-linearity of the material

at finite strains. 1 The interpretation of these results (Figures 12 and 13)

in relation to failure is discussed in another paper.
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SECTION 2. TEMPERATUL'! CONDITIONS J
|

When dissipation is signmficant it becomes mandatory to calculate
the thermal behavior of the material and details of this type of calculation
are given in another paper, 8 indicating that the presence of sizeable
temperature effects could cause much difficulty in failure studies. Con-
siderable simplification might be achieved if cuniform and constant tem-
perature state can be realized in testing for sinusoidal inputs.  An
approximate set of calculations have been made to estimate the apper
limit of the input frequency whicn will pive near uniform temperature
distribution across the thickness of the specnmen.

The other case considered is adiabatic incrcase 1n the temiperature
of a specimen for sinusoidal input These calcalations or temperature
increase are based on the effect of an 1tvremental temperature change on
the properties ot the material. Detatis ot these cases of 1sothermal and
adiabatic temperature conditions for sinisoidal inputs are pivenan the
following

(a) Isothermal tests

If the test specimen is considered, for suaplicity to be an intinite
sheet of uniform thickness with tlat surfaces and that both surface teni-
peratures of the specimen are taken to be constant at zero, then the heat

flow could be assumed as one dimensional anc expressed by the equation
) q

2 /
2 7 /D7 W,

= _v (19)
> X? K, 5t p



n

where T temperature

t = time
Kl = thermal diffusivity
K = thermal conductivity
and WV' = dissipation rate.
Assume that W' is constant with respect to time and distance x, that is

Vv

1 oT

-5 55— =0
K at

then, for a thickness - {(‘( ({, the steady state solution for temperature

distribution across the specimen satisfyinyg these conditions can be expressed

by the equation

76 = #1;//(:’2-»-/(7/2/( (20)

2
when x = 0, an equation for haif thickness £ i given by

f(7: 322;55 (21

Wy

The dissipation rate WV' can he obtained from the following equation

WV per cycle
W' = = an average dissipation rate (244)

time of one cycle

The ratios of thickness and T(x= 0) versus w, have been computed from
T

tte normalized expression

~10-



/e, _ €,

—1//<T w,

and plotted out as

log _6(; f versus

The frequency 8 can be determined as

for Solithane 113 in Figure 14,

T a4t x =0 are pre-

an upper limit when a thickness and temiperature
It should be observed in applving Figure 14 that for prescribing

scribed.
T at x = 0 the variation in dissipadon across the specimen must be sut-

ficiently small that it can be considered amiformn.

Adiabatic temperature increases for sinusoidal straun input.

(b)

Let W\, be defined as the dissipation per cycle at ternperature
1
(see Appendix 1), then WV is the dissipation per cycle at tem-

1
n

ST = T
perature lrl

T,

temperature-frequency shift factor aiwven by the WLE

() = (o, (f,-
#7 o 7

where a is the
T
n
equa.tion.7
Let N = number of cvcles at WV dissipation necessary to cuuse
n

a temperature change at A"ln_H given by the equation

AT -- /—M-F/ — /,7 == AT (constant)

-11-



Let C be the heat capacity per unit volume,

then A./ W é AT /< N M/
vy a

C #/ F7+/ Y

It was found that either side of the equality gave comparable results
provided AT was made small,

Therefore in general

v o= ARG
KT W Lo (1<) a7,

with the additional simultancous relations

/L zif’ '

oy &)= Ta A+ om0 7

Example of these calculations are given for Soltthane 113 in Ficure 15,
the initial temperature '10 = -20"C and « frequency of une radian per
second,

Note that due to the strong initial digsipation the temperature rises
first rapidly and then, as the material heats up and dissipation increases,

the rate of temperature decreases also.

-12-



Je ¢U1/QI-U1 87129 9,02-: 01
109 NIS 01 0= 3SI4 dW3L J1LV8VIAY  G1'914

(utw) 3NWIL 0o

3NiIL 901

1 1 T

T T
(Utw) | 907

JWIL YVY3NIT -

NIVH1S 3NIS H0d4 D384 SA SSINMIOIHI-dW31L H1914d

Ol

(,.01w) mip 907
8 v 0 b- 8-

T 1 1 T T T T T1¢-

0

Jo dN3L



SUMMARY

A set of equations have been derived for stress, strain, and ener sy
responses of linear viscoelastic systems for a wide range of inputs, these
equations were then employed to compute the mechanical properties of the
material Solithane 113. The temperature conditions for i1sothermal and
adiabatic testing of the material were then calculated for sinusoidal strain
inputs and graphs presented for measuring a specimen thickness or an

adiabatic temperature increase.
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APPENDIX 1

VISCOELASTIC BEHAVIOR OF SOLITHANE 113

From experimental relaxation data for Solithane 113, a Prony
series was fitted to the relaxation modualus curve, using 44 decades of
timie to collocate to points which will span the transition region from
asymptotics kK yglassy to E rubbery shown in Figure 3. The following
list of equation-, expanded from kquations 3, 11, and 14, are used to
compute the stress-strains, and the energy ratios in time.

(i} Step Strain Input

€ =€, H(t)

(a) Stress Response

¢

7 pe

- 7

O‘/f}—: Ey Mo '7‘.2 1" €, € ph

A/
(b) Total Elastic Energy
_2¢
e/ VA ,76 o 2 L “ o

(c) Viscous Damping

[}
N~
(\’1 3
Ay
~
™
N
f‘\\
~
{
0
S
N

%

b
u



(ii) Constant Strain Rate

(a) Stress Response

¢
n s

e (t) - Rtm, + 2 »n7 E’?;//-e ‘/
/

L=

(b) Total Elastic knergy

We/ —:f o 'Qf #—.LZ/W ,(f //*(;7?)

(c) Viscous Dissipation
_ pee
W, - Z " 27 ;- 2/~ € 7;/%;;;//_6)7{//

(iii) Sinusoidal Strain Rate for Steady State Stress

€ = €, Sin wt A oo
(a) Stress Response
2 py, e oy, ‘
r(f} = "77 6 S—/")(Ut '/”Z - ° 51/7 C(_Jf o/ C(’S‘(U/
LA ) O 7'7- w7,

(b) Total Elastic knergy

W=f/

[ i m & (o)) st o )
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(c) Viscous Dissipation

4?/ Zn m el 667/ Feo'r 2)72wf~ 517 2/*’”/‘4) s gm%)

where

5[1.’7 2%( - 2 @ 7;

EQUATIONS FOR THE STRESS INPUTS PRESCRIBED

(i) Step Stress Input

T o= U HE)

(a) Strain Responsc

¢
- z
ew) = v, + 2 o e )

(b) Total Elastic Energy

th 2 a S S
W (for1 " element = :{) Vo— /2 A / v ({64
(+ glassy w < 7 o A o
/ 4 t\’
:ZV;-/)7+/__C‘}_ (Z/éjv
o 7.
“
therefore W 1 (for Kelvin Model)
-z
- L 7 z - , )2
We/-zccﬁy*zxzvo Q//—c
=/
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(c) Viscous Dissipation ¢

W, (for ith element)

v

il
S~
~ S

N
-
o

A

o < A
7 2
- () e
° L L ¢
hence WV (for Kelvin model)
& -2
A - .2 7
WV = 2 Z/ [ZL A //—-F /‘/
/(.f
(1) Constant Stress Rate
v = P Z >0
and f

_Dcrp {lL/ = Dy 7 .{2‘—{/1 vzi // -~ -'Q)

(a) Strain Responsc

£
cw= L nle-r) 2 v ir)dr

Z
’7” -
= PGt T2 D (- “)

(b) Total Elastic Encrgy

z2 7 S "
We/: 5 /Pz‘} '[/j £ w/J); (2/(1
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Hence Wel (for Kelvin model)

Woy = 3(P)" Dy + 4

A

IMy
b
N
RN
N’\
| N
NRM
N
>
&

(c) Viscous Dissipation

,t—
(7/6
(for i‘h element) WV = / s /

Hence WV (for Kelvin model)

W2 PR)D (- 21 *é/—e’%/

(iii) oinusoidal Stress Input

< .
g~ = VD Sug ot “ Do
(a) Strain Response

2/

/[d (0.5 w7 ¢ 7/7

EWR) - r//.D +2 D, //~

A .
O Sincot + 2 D Vo 01 Ol—~L0 G DT [o5 ol 400 S bt~ &
<=1 ke b

2 2
/+0 7
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(b) Total Elastic Encrgy

L v f5e? o

Ve = 4 v (YD /____4_._. AE,
(=] 22

Hence wel (for Kelvin Model)
W “
e/ p V—ng wl + Z-'Z) r 5/}7[«)1 - )27 Kﬂ& cwwl”
x / /40C
: £ 02
%(UZ i wl - € -4))
(c) Viscous Dissipation
o {2/ 2
WV (for ith element) _ / /_7‘4 ) _GA) [l/f
o D | AL
Hence WV (for Aclv1n model) - . N
2 =g . N
WV = Z (u Q’T e 7:/(7§ CUZ—_/—-Zéé\S?(o ;
A (/+w 7)2 » ;
o 2. /T
N A ) 15
F ozt (1)
o7
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APPENDIX Z

DUAL STRAIN HISTORIES WITH TRANSIENT SOLUTION GIVEN FOR
STRESS RESPONSE, ETC.

EM) = R EHL D)+ (6 bt R (E-4) + ESmuft-t AL,

(a) Stress Response

_L

#7 _
V) < ne €F) # 20 m, € g /[, #1,07)
AT/

where p
A »‘,;'9
L= R%ife 1)
' 2
[2 - /QQ /2/4 / “c-c " ,
and

(‘

é T,

__7;'—‘ / 4+ (o er (6 /C(’S (u/{ f) AR /na,/f l‘) /

(b) Total Elastic knergy

2t

7 = 4
4 2 / %
Wy = 2 m, € () %5/4; i, e /I/»L]; +ZJ,)

(c) Viscous Dissipation

(‘__Zfz
Wy, - /{’f’]({f



Expanding and simplifying

W ZM

A

(2,0 fe el lA) Ly
AT, /»7«"‘ ~/re le T e % - fe ’7}
« . ;

Y -(t-t) 24
e ,?‘72 E-le Lpe T _ e 7% 3
2 (7 5 5

Co0 7, 26’4:{(& cw/t-£) 4 £ /4 co?y
(=l Z)

+ w72

=

—e 7 pa 2))

_r ~2ﬁ/_f‘-1/o) ﬂ() _ZZ///

# S 200 (¢- {)/""("7 ) (oszu0/¢-2,)
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APPLENDIX 3

As explained in the test it is sometimes useful to find a strain
history that will reach a given point in@, ¢ space. Outhined below is a
method for finding the related dual strains that will reach a given Eb, Ty

point. In order to reach a unique solution we will take

H

RI/RZ constant = K and Rl'l‘1 = Gh/c (¢ = constant)

e €, - G 4 K (4-L)

= €b L ZLZ ./_6 — £ f,
K N

Thus

Ve

/\7,1‘2 -‘66//%5;2 - Z/)” k‘/

The problem is therefore reduced to finding the Rl that will

roduce o.. Because of the clastic limit not all €, , 0, points can be
P b RN

b

~ached. N : xS € > . .
reached. In order for a solution to exist 0y €y 2 Lrubbery

Computing: to isoiate R, to within one decade, run through R
i

1

values starting at R, very small (say l()—8) and go to R

very large

1
(say 1010). Run through these R

1

1 values by powers of 10 calculating
a(R 1) each time and comparing it with Ty Now ¢ is monotonically
increasing in Rl 80 iféb,ob is a good point there will be a decade for

R1 betwecn 10-4 and 1010 for which ¢ will be less than AR to the left and
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greater than o, to the right. Once thig decade is found, cut it in half and

b . o »

see if the o for thisg Rl is less than Ty If s0, Rl lies in the upper half.

This is repeated until R, is satisfactorily resolved. It takes on the

1

average 100 iterations to find an R, which yields a ¢ within 0. ()10/0 of u

1

level is automatically reached and once R

b

The € is found, R,t, and t

b 1 271 PA

are also defined.
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